Sociobiological Control of Plasmid Copy Number in Bacteria
نویسندگان
چکیده
All genes critical for plasmid replication regulation are located on the plasmid rather than on the host chromosome. It is possible therefore that there can be copy-up "cheater" mutants. In spite of this possibility, low copy number plasmids appear to exist stably in host populations. We examined this paradox using a multilevel selection model. Simulations showed that, a slightly higher copy number mutant could out-compete the wild type. Consequently, another mutant with still higher copy number could invade the first invader. However, the realized benefit of increasing intra-host fitness was saturating whereas that of inter-host fitness was exponential. As a result, above a threshold, intra-host selection was overcompensated by inter-host selection and the low copy number wild type plasmid could back invade a very high copy number plasmid. This led to a rock-paper-scissor (RPS) like situation that allowed the coexistence of plasmids with varied copy numbers. Furthermore, another type of cheater that had lost the genes required for conjugation but could hitchhike on a conjugal plasmid, could further reduce the advantage of copy-up mutants. These sociobiological interactions may compliment molecular mechanisms of replication regulation in stabilizing the copy numbers.
منابع مشابه
Regulation of DNA replication by iterons: an interaction between the ori2 and incC regions mediated by RepE-bound iterons inhibits DNA replication of mini-F plasmid in Escherichia coli.
In bacteria, plasmids and some DNA viruses, DNA replication is initiated and regulated by binding of initiator proteins to repetitive sequences. To understand the control mechanism we used the plasmid mini-F, whose copy number is stringently maintained in Escherichia coli, mainly by its initiator protein RepE and the incC region. The monomers of RepE protein bound to incC iterons, which exert i...
متن کاملGrowth-Rate Dependence Reveals Design Principles of Plasmid Copy Number Control
Genetic circuits in bacteria are intimately coupled to the cellular growth rate as many parameters of gene expression are growth-rate dependent. Growth-rate dependence can be particularly pronounced for genes on plasmids; therefore the native regulatory systems of a plasmid such as its replication control system are characterized by growth-rate dependent parameters and regulator concentrations....
متن کاملActive stable maintenance functions in low copy-number plasmids of Gram-positive bacteria II. Post-segregational killing systems.
Active support is needed for low copy-number plasmids to be stably maintained in bacterial cells. The mechanisms that fulfill this role are (i) partition systems (PAR) acting to separate plasmid molecules to daughter cells and (ii) toxin-andidote (TA) (post-segregational killing-PSK) systems which arrest cell growth until the plasmid reaches the correct copy-number or kill the cells that have n...
متن کاملControl of Chromosome and Plasmid Replication in Escherichia coli
Olsson, J. 2003. Control of chromosome and plasmid replication in Escherichia coli. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 838. 65 pp. Uppsala. ISBN. 91-5545627-8 Life is cellular. Cells grow and divide to give two new cells; this process is called the cell cycle. The chromosome in a bacterium is replicated int...
متن کاملDevelopment of a high-copy plasmid for enhanced production of recombinant proteins in Leuconostoc citreum
BACKGROUND Leuconostoc is a hetero-fermentative lactic acid bacteria, and its importance is widely recognized in the dairy industry. However, due to limited genetic tools including plasmids for Leuconostoc, there has not been much extensive research on the genetics and engineering of Leuconostoc yet. Thus, there is a big demand for high-copy-number plasmids for useful gene manipulation and over...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010